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SUMMARY 

A f requency domain maximum l i k e l i h o o d  method is developed f o r  t h e  estima- 
t i o n  o f  a i r p l a n e  s t a b i l i t y  and control parameters from measured da ta .  
model of an airplane is represented  by a d i sc re t e - type  s t eady- s t a t e  Kalman f i l t e r  
with t i m e  variables rep laced  by t h e i r  Four i e r  series expansions.  The l i k e l i -  
hood func t ion  of innovat ions  is formulated,  and by its maximization wi th  
respect to  unknown parameters t h e  e s t i m a t i o n  a lgor i thm is obta ined .  This  algo- 
rithm is then  s i m p l i f i e d  to t h e  output  error es t imat ion  method wi th  t h e  d a t a  i n  
t h e  form o f  t ransformed t i m e  h i s t o r i e s ,  frequency response curves ,  or spectral 
and cross-spectral d e n s i t i e s .  The development is followed by a d i s c u s s i o n  on 
t h e  equiva lence  o f  t h e  cost f u n c t i o n  i n  t h e  t i m e  and frequency domains, and on 
advantages and d isadvantages  of t h e  frequency domain approach. The algorithm 
developed is app l i ed  i n  four  examples to t h e  e s t i m a t i o n  of  l o n g i t u d i n a l  param- 
eters of  a gene ra l  a v i a t i o n  a i r p l a n e  us ing  computer-generated and measured d a t a  
i n  t u r b u l e n t  and st i l l  a i r .  The cost func t ions  i n  t h e  t i m e  and frequency 
domains are shown to be equ iva len t ;  t h e r e f o r e ,  both approaches are complemen- 
t a r y  and n o t  con t r ad ic to ry .  Despite some computat ional  advantages of parameter 
e s t ima t ion  i n  t h e  frequency domain, t h i s  approach is l i m i t e d  to l i n e a r  equa- 
t i o n s  of  motion wi th  c o n s t a n t  c o e f f i c i e n t s .  

The 

INTRODUCTION 

The e a r l y  approaches to  t h e  e x t r a c t i o n  o f  a i r p l a n e  s t a b i l i t y  and c o n t r o l  
parameters from f l i g h t  d a t a  were based on simple semigraphical  or a n a l y t i c a l  
methods. Some of  t h e s e  methods used measured frequency response curves  which 
provided good i n s i g h t  i n t o  t h e  phys ics  of t h e  system and reduced d a t a  process- 
ing to t h e  use  of  s imple a lgeb ra .  One of  t h e  f i r s t  attempts to ana lyze  mea- 
sured  da ta  i n  t h e  frequency domain f o r  ob ta in ing  t h e  c h a r a c t e r i s t i c s  of t h e  
shor t -per iod  l o n g i t u d i n a l  motion of  an a i r p l a n e  w a s  made i n  r e f e r e n c e  1 .  I n  
r e fe rence  2 t h e  same cha rac t e r  istics were es t imated  e i t h e r  by f i t t i n g  t h e  mea- 
sured frequency response curves  or by s u b s t i t u t i n g  t h e  measured d a t a  i n  t h e  
t r a n s f e r  func t ion  equat ion  and minimizing t h e  r e s u l t i n g  error.  I n  both cases 
t h e  l ea s t - squa res  technique  was appl ied .  The same technique  w a s  used f o r  t h e  
d i r e c t  e s t ima t ion  of t h e  l o n g i t u d i n a l  and l a t e r a l  aerodynamic parameters i n  
r e fe rences  3 and 4 ,  r e s p e c t i v e l y .  

The r eg res s ion  wi th  complex v a r i a b l e s  was developed i n  r e fe rence  5 and 
appl ied  to t h e  e s t i m a t i o n  of  a i r p l a n e  t r a n s f e r  func t ion  c o e f f i c i e n t s  from mea- 
sured  frequency response curves.  A more gene ra l  formula t ion  of t h e  r eg res s ion  
i n  t h e  frequency d m a i n  w a s  in t roduced  i n  r e f e r e n c e  6 and extended to t h e  maxi- 
mum l i k e l i h o o d  method i n  r e fe rence  7. I n  both  cases t h e  procedure w a s  used f o r  
t h e  des ign  of  an optimal inpu t  f o r  system i d e n t i f i c a t i o n  r a t h e r  than  f o r  param- 
eter e s t ima t ion .  

With t h e  a v a i l a b i l i t y  o f  modern d i g i t a l  computers, t h e  f requency domain 
f o r  a i r p l a n e  parameter e s t i m a t i o n  w a s  almost f o r g o t t e n  and t h e  measured d a t a  



have been mostly analyzed in the time domain. However, some further research 
and applications in this area have appeared. New frequency domain methods for 
system identification based on the equation-error formulation were introduced 
in reference 8 .  Frequency domain data were used for the extraction of param- 
eters of an elastic airplane in reference 9, of parameters of an airplane with 
nonsteady aerodynamics in references 10 and 11, and of flying qualities crite- 
ria in reference 12.  

The material contained in this report is an extension of the research ini- 
tiated in reference 5 and continued in references 6 and 7. Also included in 
this report are some of the developments and results from references 13 and 14, 
respectively. The purpose of this report is to present a rigorous development 
of an algorithm for the maximum likelihood estimation of airplane parameters in 
the frequency domain. The report also briefly points out the relationships 
between the estimation in the time and frequency domains, and the advantages 
and disadvantages of the frequency domain approach, mainly in terms of appli- 
cability, computing complexity, and accuracy of final results. The development 
starts with the formulation of a steady-state Kalman filter for a linear dynam- 
ical system. Before the log-likelihood function of the innovations is formu- 
lated, the basic properties of a complex random number and random sequence are 
presented. The log-likelihood function is minimized by using the modified 
Newton-Raphson technique. The maximum likelihood algorithm is then simplified 
by neglecting external disturbances to the airplane. Following the discussion, 
four examples are presented. They deal with the simplified longitudinal motion 
of a general aviation airplane and use both computer-generated and real-flight 

SYMBOLS 

sensitivity matrix 

reading of vertical accelerometer, g units 

covariance matrix of residuals 

pitching-moment coefficient, My/&SC 

vertical-force coefficient, F~/:S 

wing mean aerodynamic chord, m 

constants in differential equation for Gauss-Markoff process 

matrix of transformed-system equations 

expected value 

matrix of continuous system 

force along vertical body axis, N 



G 

GW 

9 

H 

K11,12,. 

k1,2,. . 

R 

Rzz 
I 

control matrix of continuous system 

process-noise distribution matrix of continuous system 

acceleration due to gravity, m/sec2 

transformation matrix 

identity matrix 

moment of inertia about lateral body axis, kg-m2 

log-likelihood function 

= \I-1 

Kalman-filter-gain matrix 

. . , 3 3  elements of K matrix 

.,lo constants in equations of motion 

Fisher information matrix 

pitching moment, N-m 

transformed quantity at mth and nth interval, respectively 

mass, kg (in appendix D) 

number of data points 

covariance matrix of state variables 

probability 

probability density 

process-noise covariance 

rate of pitch, rad/sec 

1 

2 
kinetic pressure, -PI2, 

ma tr ix 

N/m2 

measurement-noise covariance matrix 

correlation function of z 

number of output variables 
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S 

T 

U 

v 

V 

W 

wg 

X 

Y 

z 

zn 

a 

E 

0 

v 

P 

02 

wing area, m2 

cross-spectral density of y and u 

spectral density of z 

quantity a t  s t h ,  t t h ,  and T t h  interval, respectively 

transfer-function matrix 

control vector 

true airspeed, m/sec 

measurement- no i se vector 

process-noise vector 

vertical  component of turbulence velocity, Wsec 

s ta te  vector 

measurement vector 

random variable rea l  or complex 

= e x p ( j q $  

angle of attack, rad 

angle of attack measured by w i n d  vane, rad 

control matrix of discrete system 

process-noise distribution matrix of discrete system 

elevator deflection, rad 

Kronecker delta 

arbitrary small number 

vector of unknown parameters 

pitch angle, rad 

innovat ion vector 

a i r  density, kg/m3 

variance (a is standard deviation) 

4 

i 

d 



@ t r a n s i t i o n  ma t r ix  

phase ang le  of complex v a r i a b l e  y ,  deg 

phase-angle c h a r a c t e r i s t i c s  r e l a t i n g  y and u v a r i a b l e s ,  deg 

'PY 

'PYU 

w angular  f requency,  rad/sec 

w0 = a/N 

Aerodynamic d e r i v a t i v e s  ( r e fe renced  to a system o f  body axes w i t h  t h e  o r i g i n  a t  
the a i r p l a n e  c e n t e r  of g r a v i t y ) ;  

a -  d -  

ac' 
= -  

''&e a&, 

def ined  i n  appendix D (eqs. (D5) to  (D8) ) 
&,c&, 1 
S u b s c r i p t s  : 

C cont inuous system 

E measured q u a n t i t y  

9 g u s t  

k k t h  e lement  of vec to r  or k t h  column of  ma t r ix  

R Rth element  o f  vec to r  or % t h  row of matrix 

m vector  c o n s i s t i n g  of  a l l  e lements  up to and inc luding  m 

0 i n i t i a l  va lue  

5 



Super scr ip t s  : 

T transpose matrix 

-1 inverse matrix 

estimated value 

transformed variable 

n 

M 

derivative w i t h  respect to time 

* transpose complex conjugate matrix 

R real part 

I imaginary part 

Ma thema t ica l  m ta ti on : 

Tr trace of matrix 

Re real part of complex number 

I I  de terminan t 

- 
amplitude-ratio characteristic relating and u variables 

U 

A increment 

ESTIMATION ALGORITHM 

For the development of the estimation algorithm it is necessary f i r s t  to 
postulate the model of an airplane and then to transform t h i s  model into the 
frequency dmain. 
of innovations and its maximization w i t h  respect to the unknown parameters. 
T h i s  step leads to the iterative scheme for parameter estimation, which updates 
the previous estimates by employing the second- and first-order gradients of 
the log-likelihood function. 

The next step is the formulation of the likelihood function 

The linear airplane equations of motion are assumed i n  discrete-time form 
to be 

x( t+ l )  = o x(t) + r u(t)  + rw w(t) (t = 0,1, . . ., N - 1 )  (1 1 

y ( t )  = H x ( t )  + v ( t )  (t = O,l, . . ., N - 1 )  (2)  

6 
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where x ( t )  is a state vec to r ,  u ( t )  is a c o n t r o l  vec to r ,  w ( t )  is a 
process-noise  v e c t o r ,  y ( t )  is an o u t p u t  v e c t o r ,  and v ( t )  is a measurement- 
no i se  vec tor .  

I t  is assumed t h a t  

(a) Q, r, rw, and H are c o n s t a n t  matrices 

(b) Q is stable 

(c) (@,r) and (Q,rw) are c o n t r o l l a b l e  p a i r s  

(d) (@,H) is observable  

(e) w and v a r e  s t a t i o n a r y ,  Gaussian uncor re l a t ed  no i se  sequences wi th  

E{v( t )  w T ( T ) )  = 0 f o r  a l l  t and T 

( f )  N is even 

In  t h e  g e n e r a l  case t h e  unknown parameters  w i l l  occur i n  t h e  matrices Q, 
r, rw, H, Q, R,  x(O),  and Po. Their e s t i m a t i o n  may be extremely d i f f i -  
c u l t  because of the a lgo r i thm complexity (see r e f .  15)  and possible i d e n t i f i -  
a b i l i t y  problems (see r e f .  1 6 ) .  The system parameter e s t i m a t i o n  w i l l  be 
s i m p l i f i e d  by formula t ing  a s t e a d y - s t a t e  Kalman-f i l ter  r e p r e s e n t a t i o n  of 
equa t ions  (1 )  and (2)  and by cons ide r ing  t h e  unknown parameters i n  t h i s  
r ep resen ta t ion .  

The c o n d i t i o n a l  expected va lue  of  t h e  state vec to r  is de f ined  as 

7 



The innovat ions  are de f ined  as 

V ( t )  = y ( t )  - H z ( t )  

and t h e  covar iance  ma t r ix  of state v a r i a b l e s  is de f ined  as 

Then t h e  s t eady- s t a t e  Kalman-f i l ter  r e p r e s e n t a t i o n  o f  t h e  system described by 
equa t ions  (1) and (2 )  is 

Reference 17 shows t h a t  t h e  innovat ions  V ( t )  form a sequence of independent 
Gaussian v e c t o r s  wi th  

The d e f i n i t i o n  of  t h e  ga in  ma t r ix  K i n  equat ion  ( 9 )  can be found i n  r e f e r -  
ence 15  or 16 i n  t h e  form 

B = HPHT + 

p = @POT - 

For t h e  f u r t h e r  

R (1 3) 

T KBKT + rd rw  (1 4)  

development of  t h e  i d e n t i f i c a t i o n  a lgo r i thm a l l  t i m e  func- 
t i o n s  i n  equat ions  ( 9 )  and (10) are w r i t t e n  i n  terms of  their Four i e r  series 
expansions.  As stated i n  appendix A, t h e  Four i e r  series expansion o f  random 
v a r i a b l e s  holds  i n  t h e  mean-square sense .  I f  t h e  Four i e r  series component of  
x ( t )  is def ined  as 

8 



f o r  

N 

2 
1 . . ., O r 1 ,  - I  - -  

2lT 

N 
Lere  00 = - , and similar y f o r  t h e  o t h e r  v a r i a b l e s ,  equat,Jns ( 9 )  and (10) 

transformed from t h e  t i m e  to  t h e  frequency domain have t h e  form 

zn Z(n) = H(n) + I’ G(n) + K O(n) 

I n  equat ion  (16) zn = exp(jnwo),  which fo l lows  from t h e  r e l a t i o n s h i p  

assuming t h a t  x ( 0 )  = x(N) = 0. As proved i n  appendix A, t h e  transformed inno- 
v a t i o n s  3 (n)  are uncor re l a t ed ,  orthogonal,  and Gaussian random v a r i a b l e s  with 

E{g(n)) = 0 I 
where SYL, is t h e  spectral d e n s i t y  o f  V ( t ) ,  and g*(n)  is t h e  complex conju- 
gate of gT(n ) .  It fo l lows  from equa t ions  (16) and (17) t h a t  

G(n) = H ( Z n 1  - a)-’ r G(n) + [H (ZnI - K + I1 g i n )  

= T1 (n,@ z ( n )  + T2(n,@) G(n) 

9 



i 
f 
1 

(20) I 

where I is the i d e n t i t y  ma t r ix ,  T1 and T2 are t h e  system t r a n s f e r  func- 
t i o n s  def ined  as 

I 

T~ (n,O) = H(Z,I - 6)-1r  

T2(nr@) = H(Z,I - Q ) - ~ K  + I 
I 

and @ is t h e  vec tor  o f  unknown parameters i n  equa t ions  (9)  and (10) .  Equa- i 
t i o n  (19) is i n v e r t i b l e  i n  t h e  sense  t h a t  p ( n )  can be solved f o r  d i r e c t l y  I 

i n  terms of g ( n )  and 0 (n) i n  terms of p ( n )  (see ref. 1 8 ) .  This  implies 
t h a t  T2 is nonsingular .  Therefore ,  from equat ion  (19) 

To o b t a i n  t h e  l i ke l ihood  func t ion ,  i.e., t h e  j o i n t  p r o b a b i l i t y  d e n s i t y  of  
t h e  transformed innovat ions  0 [n)  (assuming t h a t  a l l  parameters are known), 
a vec to r  0, c o n s i s t i n g  o f  all innovat ions  up to and inc lud ing  frequency m 
is introduced.  Therefore  

Assuming t h a t  t h e  p r o b a b i l i t y  d i s t r i b u t i o n  of 0, has a d e n s i t y  p[gm],  then 
it follows from t h e  d e f i n i t i o n  of c o n d i t i o n a l  p r o b a b i l i t i e s  t h a t  

Repeated u s e  of t h i s  formula g i v e s  t h e  express ion  f o r  t h e  l i k e l i h o o d  func t ion  
as 

Because t h e  d i s t r i b u t i o n  of 0(m) is Gaussian,  then  t h e  d i s t r i b u t i o n  of 0 ( m )  
g iven g(m-1) is also Gaussian; i.e., 

10 



as follows from the definition of a complex multivariate distribution in appen- 
dix B. In equation (26)  r is the dimension of the innovation vector. 

Using equation ( 2 6 )  the logarithm of equation (25 )  can be written as 

In the log-likelihood function given by equation ( 2 7 ) ,  the unknown parameters 
are the elements of the matrices @ ,  r ,  H, K, and S w .  An estimate of the 
unknown parameters is obtained by minimizing the log-likelihood function from 
the feasible set of parameter values. Optimizing the log-likelihood function 
for parameters in Syv gives 

N 
--1 
2 

where Cn = >. The estimates of the remaining unknown parameters are given 
N 
2 

n=- - 

by the root of the equation 

A 

for %V replaced by SW. This root can be found by a modified Newton-Raphson 
iteration (e.g., ref. 19)  as 

11 



h 

where t h e  step s i z e  @ f o r  parameter estimates is given by 

The index 0 a t  t h e  ma t r ix  M i n d i c a t e s  t h a t  i t s  elements  were computed for 
0 = 00. I n  equa t ion  (31) M is t h e  F i s h e r  information m a t r i x  

M = -E{ a25 (0) ] 
a@ a@ 

Because t h e  step s i z e  f o r  parameter estimates is a v e c t o r  w i th  real elements  
on ly ,  and t h e  log - l ike l ihood  f u n c t i o n  is real ,  t h e  expres s ions  f o r  t h e  f i r s t -  
and second-order g r a d i e n t s  of J(0) are also real; i.e., 

aJ (0) aij  (n) 
- -  - -2N Re In V* (n) S;: - 

a 0 k  %k 

and 

(33) 

The expres s ions  for t h e  elements o f  t h e  information m a t r i x  and t h e  gradi-  
e n t  of t h e  log-l ikel ihood f u n c t i o n  are developed i n  appendix C i n  t h e  form 

and 

a J (0) - 

(36) 

12 



where 

are t h e  estimates of i npu t  spectral d e n s i t i e s  and cross-spectral d e n s i t i e s ,  
r e spec t ive ly .  

The f i n a l  estimates of unknown parameters have t h e  fo l lowing  properties 
(see r e f s .  20 and 21): 

They are c o n s i s t e n t ;  i.e., 

(wi th  E a r b i t r a r i l y  s m a l l )  

They are a sympto t i ca l ly  unbiased; i. e., 

and they  are a sympto t i ca l ly  e f f i c i e n t  wi th  

A 

E{ (6 - 0)  (0 - h -E 

Because  o f  equa t ions  (32) and ( 3 8 ) ,  t h e  inve r se  of  t h e  information mat r ix  pro- 
v ides  t h e  Cramgr-Rao lower bounds on t h e  va r i ance  and covar iance  of errors i n  
t h e  es t imated  parameters. 

OUTPUT ERROR METHOD 

I f  t h e  process noise is z e r o  and t h e  i n i t i a l  states are assumed to be 
equa l  i d e n t i c a l l y  to ze ro ,  i.e., w ( t )  = 0 ,  x ( 0 )  = 0,  and P ( 0 )  = 0 ,  t h e  
s ta te -covar iance  m a t r i x  is also zero.  Then, as follows from equa t ions  (12) 
and (211, t h e  Kalman g a i n s  are z e r o  and T2 = I. The innovat ions  are reduced 
to output  errors 

13  



1 
f where T(n,@o) is equa l  to T1 (n,@) def ined  by equa t ion  ( 2 0 ) .  For 00 -+ 0 

t h e  innovat ions  O(n) + ?(n)  and SvV -+ S,. The expres s ions  f o r  t h e  
elements of t h e  information ma t r ix  and g r a d i e n t  of t h e  log- l ike l ihood func t ion  
are obta ined  by s impl i fy ing  equa t ions  (35) and (36) as 

I 
N 

L n=- - 
2 

and 

The express ions  f o r  t h e  information ma t r ix  and t h e  g r a d i e n t  of t h e  log- 
l i k e l i h o o d  func t ion  can also be e a s i l y  der ived  from t h e  s i m p l i f i e d  log- 
l i k e l i h o o d  func t ion ,  which takes t h e  form o f  t h e  o u t p u t  error cost f u n c t i o n  

These express ions  are 

M(@) = 2N Re En A*(n) S z  A(n) 

a J  (0) -1 - -  - -2N R e  E, A* (n) S, 3 (n) ao 

where A(n) is t h e  s e n s i t i v i t y  ma t r ix  whose elements  are equa l  to 
a rT(n,@o) G(n) I/%%. 

I n  some experiments  a i r p l a n e  t r a n s f e r  f u n c t i o n s  are measured d i r e c t l y  
us ing  a harmonic inpu t  or are determined from measured input-output  t i m e  
h i s t o r i e s .  Then t h e  cost func t ion  inc ludes  a t r a n s f e r  f u n c t i o n  error r a t h e r  
t han  an  ou tpu t  error. The cost func t ion  is t h e r e f o r e  formed as 

(43) 

(44 )  



where T is a vec tor  which inc ludes  system t r a n s f e r  f u n c t i o n s  as elements.  
These t r a n s f e r  func t ions  are computed from equat ion  (20) f o r  a g iven  00. 

Both cost f u n c t i o n s  ( 4 2 )  and (45 )  can be minimized wi th  respect to unknown 
parameters i n  a, G, and H or w i t h  respect to t r a n s f e r  func t ion  c o e f f i c i e n t s  
i n  T. The estimates are ob ta ined  from equa t ions  ( 3 1 )  , (43)  , and ( 4 4 ) ;  t h e  
spectral d e n s i t i e s  are g iven  by equa t ion  (28) us ing  p e r t i n e n t  r e s idua l s .  

For a system wi th  a s i n g l e  inpu t ,  t h e  o u t p u t  error cost f u n c t i o n  wi th  mea- 
su red  t r a n s f e r  f u n c t i o n s  (frequency response curves)  is de f ined  as 

I n  t h i s  formula t ion  t h e  scalar v a r i a b l e  
ing  func t ion  express ing  t h e  r e l i a b i l i t y  of  t he  measured data according to t h e  
harmonic con ten t  of an input .  

G(n) may be i n t e r p r e t e d  as a weight- 

DISCUSSION 

The frequency domain i d e n t i f i c a t i o n  has  s e v e r a l  features which are d i s t i n c t  
They are mainly associated wi th  t h e  model repre- from t h e  t i m e  domain approach. 

s e n t a t i o n  and e s t i m a t i o n  algorithm. There is, however, t h e  equiva lence  i n  t h e  
cost func t ion  used i n  t h e  t i m e  and frequency domains as expressed  by Pa rceva l ' s  
theorem. This theorem p o s t u l a t e s  t h e  r e l a t i o n s h i p  between t h e  squared magni- 
tudes  of the  Four i e r  t ransform pairs. I t  t h e r e f o r e  states t h a t  t h e  t i m e  domain 
cost func t ion ,  

N- 1 

t = O  
where 2, = >, is equa l  to t h e  frequency danain cost func t ion ,  

Using equat ion  (15 )  the  frequency domain cost func t ion  can be w r i t t e n  as 
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N- 1 

T=O 
where cT = >. But according to appendix A, 

= o  

(for t = T) 

(for t # T) 

The equivalence of both approaches is no longer valid if the frequency domain 
cost function is restricted to a given frequency range. Such a restriction is 
not necessary, but it is an option which is a strong point in favor of fre- 
quency domain analysis with respect to time domain analysis. The selected 
frequency range of interest was used, for example, in reference 9, where air- 
plane rigid modes were separated from elastic ones. For similar results in the 
time domain the data must be filtered accordingly. 

The early airplane estimation techniques in the frequency domain were 
using measured frequency response curves only. This approach could have an 
advantage when repeated measurements under the same conditions are available. 
A hypothesis concerning the model adequacy can be tested using the variance 
estimates from scatter around the mean and from residuals (ref. 5). On the 
other hand the simultaneous analysis of repeated maneuvers for obtaining a 
single set of estimates with increased accuracy can also be applied to directly 
measured or transformed time histories. In general, transformed input-output 
time histories are preferred in frequency domain parameter estimation. The 
inaccuracies of frequency response curves computed from transformed inputs and 
outputs can be quite pronounced for frequencies in which the harmonic content 
of an input is close to zero. 

The transformation of model equations into the frequency domain replaces 
differentiation and convolution with multiplication. As a result the sensitiv- 
ity equations in the nonlinear estimation algorithm are reduced to uncoupled 
algebraic expressions. This simplification can be appreciated mainly in cases 
for which convolution integrals are included in the equations of motion 
(ref. 11). 

The computational differences between the time and frequency domains dis- 
cussed so far could be viewed as advantages of the frequency domain analysis. 
There is, however, a substantial disadvantage of the airplane identification 
in the frequency domain. This approach is limited, for practical reasons, to 
only linear equations of motion with constant coefficients. The computing time 
needed for parameter estimation in the frequency domain (transformation of mea- 
sured data included) is about 50 percent more than in the time domain. The 
assessment was obtained from the number of equations used in both domains for 
one iteration when the algorithms were applied to the system of equations with- 
out convolutions and process noise. 
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The e s t ima t ion  a lgo r i thm w a s  developed f o r  a l i n e a r  d i scre te - t ime model. 
The a i r p l a n e  equa t ions  of  motion are, however, u s u a l l y  given i n  a cont inuous 
form as 

x = Fx + Gu + Gww (49) 

where t h e  unknown parameters can be i n  t h e  matrices F, G,  and %. For t h e  
cont inuous model (eq. ( 4 9 ) ) ,  t h e  expres s ions  f o r  t h e  information mat r ix  and 
g r a d i e n t  of  t h e  log- l ike l ihood func t ion  remain t h e  same as equat ions  (35) 
and (36). B u t  now t h e  t r a n s f e r  func t ions  are def ined  as 

~ ~ ( w , e )  = H ( j w 1  - ~ 1 - 1 ~  (50 

T2(w,8) = H ( j w 1  - F)"KC + I (51 

where t h e  Kalman-fil ter-gain mat r ix  is obta ined  from t h e  r e l a t i o n s h i p s  (see, 
e .g . ,  r e f .  22) 

K, = PHTR-~ 
z 

and 

FP + PFT - PHTR-~HP + % ~ ~ ~ l t ;  = o 

I n  t h e  model formula t ion  it was assumed t h a t  t h e  i n i t i a l  cond i t ions  were 
e q u a l  to  zero, t h a t  t h e  model descr ibed  a s t a b l e  motion of an a i r p l a n e ,  t h a t  
there were no a p r i o r i  known va lues  of s t a b i l i t y  and c o n t r o l  parameters ,  and 
t h a t  the measurement noise  w a s  Gaussian and uncorre la ted .  I f  t h e  i n i t i a l  con- 
d i t i o n s  d i f f e r  from ze ro ,  t h e  a d d i t i o n a l  term H(z,I - @)- '  x(0 )  would have to  
be included i n  equat ion  (19)  or t h e  new t r a n s f e r  func t ion  H ( j w 1  - F)-l  x ( 0 )  
would have to be added to  those  def ined  by equa t ions  (50 )  and (51 ) .  Then 
t h e  vector  of unknown parameters can be augmented by t h e  vec tor  of  i n i t i a l  
condi t ions .  

I f  t h e  a i r p l a n e  motion inc ludes  an uns t ab le  mode, t h e  parameter e s t i m a t i o n  
s t i l l  can proceed provided t h a t  t h e  degree of  i n s t a b i l i t y  is not  high. A l a r g e  
i n s t a b i l i t y ,  on t h e  o t h e r  hand, can r e s u l t  i n  excess ive  t r a n s i e n t  motion due  to 
nonzero i n i t i a l  cond i t ions  and/or t h e  inpu t  and thus  l i m i t  t h e  v a l i d i t y  of  t h e  
l i n e a r  equat ions  of motion. I f  t h e  a pr ior i  mean va lues  and va r i ances  of some 
parameters are known, they  can be included i n  t h e  e s t ima t ion  procedure.  I n  
t h i s  case t h e  cost f u n c t i o n  must be expanded i n  a s imilar  way a s  i n d i c a t e d  i n  
r e fe rence  19. 

The maximum l i k e l i h o o d  method developed ear l ier  assumed a Gaussian,  uncor- 
r e l a t e d  measurement noise .  I f  t h e  random sequence r ep resen t ing  t h i s  no i se  is 
c o r r e l a t e d ,  t h e  e s t i m a t i o n  a lgor i thm does n o t  change. The c o n s t a n t  va lues  of 
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spectral d e n s i t i e s  Svy or Svv are merely rep laced  by t h e  frequency depen- 
den t  va lues  es t imated  from expres s ions  similar to equat ion  (37). 

EXAMPLES 9 
As examples t h e  parameters o f  a small g e n e r a l  a v i a t i o n  a i r p l a n e  were esti- 

mated from computer-generated d a t a  and from measured d a t a  i n  s t i l l  and turbu-  
l e n t  a i r .  (Some of  t h e  d a t a  f o r  examples 1 ,  3 ,  and 4 are from r e f .  14.)  For , 
a l l  examples t h e  model o f  t h e  a i r p l a n e  was based on s i m p l i f i e d  l o n g i t u d i n a l  
equa t ions  of  motion wi th  t h e  atmospheric tu rbulence  ( g u s t s )  approximated as a 
Gauss-Markoff process of f i r s t  o rde r .  The model equa t ions  (cont inuous form) 
are developed i n  appendix D. When t h e  state and o u t p u t  equa t ions  (D4) and (D9) 
are transformed i n t o  t h e  frequency domain and rear ranged ,  they  have t h e  form 

t 

The s t a t e  and o u t p u t  v e c t o r s  are specified as 
0- 

j ;  = [a  Ggl 

where t h e  r a n d m  inpu t  is assumed to be a Gaussian,  uncor re l a t ed  n o i s e  process 
wi th  E{w} = 0 and E{w2) = CJg. The matrices i n  equa t ions  (52) and (53) are 
formulated as 

L o  0 j w  + c1 

Gw = 0 -k c Co 1 ms 
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H =  

k9 +lo 

0 1 

The known constants k1, k2, . . . ?  klor cl, and c2, and the pitching- 
moment derivatives $, cI;ls, Cgq, and are defined in appendix D. (% e 

Example 1 

The output data were computed from equations (D4) and (D9) for given 
inputs 6, and w (with Og = 1 m/sec) and for a given set of parameters. 
To the computed time histories of output variables, an uncorrelated and 
Gaussian measurement noise was added. The measurement-noise standard errors 
were selected as 

Ool = 0.0028 rad Oq = 0.0063 rad/sec UaZ = 0.029 

The time histories of the input and output variables are plotted in figure 1. 
For the estimation algorithm these data were transformed into the frequency 
domain using the Filon integration formula. The sampling interval of the 
transformed data was 1.047 rad/sec. The transformed data were truncated at 
the frequency interval k20.944 rad/sec because outside this interval their 
amplitudes were very small. 

The steady-state Kalman filter representation of the airplane motion 
described by equations (52) and (53) is 

It was assumed that the parameters c1 and c2: the initial conditions, and 
the variances of the process and measurement noise were known. Also assumed 
as known was the parameter 

Czs 
because of the identifiability problem. 
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The las t  assumption is s u b s t a n t i a t e d  by t h e  small effect of t h e  term 
on t h e  airplane motion. The vector  of unknown parameters w a s  t h e r e f o r e  
formed as 

k8c1Gq 

i 

' i  
where K11, K12, . . ., and K33 are t h e  elements  of t h e  Kalman-fil ter-gain 1 

m a t r i x  Kc. The i n i t i a l  va lues  of t h e s e  elements  were computed from equa- 
t i o n s  (50) and (51) .  

F i r s t ,  t h e  unknown parameters were determined by t h e  maximum l i k e l i h o o d  
method developed. I n  tab le  I t h e  estimated s t a b i l i t y  and c o n t r o l  parameters 
are compared wi th  t h e i r  t r u e  va lues ,  and t h e  estimated Kalman g a i n s  are com- 
pared with t h e i r  i n i t i a l  va lues .  
eters is, i n  g e n e r a l ,  very good. The e s t ima ted  va lues  of t h e  Kalman g a i n s  
d i f f e r  s i g n i f i c a n t l y  from t h e i r  i n i t i a l  v a l u e s ,  and t h e  s t anda rd  errors (lower 
bounds) of t h e s e  parameters are q u i t e  high. T h i s  i n d i c a t e s  l o w  accuracy o f  
t hese  estimates. When, however, t h e  Kalman g a i n s  were f i x e d  on t h e i r  i n i t i a l  
value,  t h e  e s t i m a t e s  of t h e  a i r p l a n e  parameters were f a r t h e r  from t h e  t r u e  
va lue ,  as i n d i c a t e d  by results i n  t h e  f o u r t h  column of table I. The las t  set  
of a i r p l a n e  parameters was ob ta ined  by cons ide r ing  no process no i se  e f f e c t  on 
t h e  o u t p u t  data. These estimates are also less accurate than  t h o s e  ob ta ined  
by t h e  maximum l i k e l i h o o d  method wi th  a l l  15 unknown parameters. Table I also 
inc ludes  t h e  va r i ance  estimates of t h e  r e s i d u a l s .  ahe  l imi t ed  expe r i ence  
ob ta ined  from t h i s  example i n d i c a t e s  t h a t  for s t a b i l i t y  and c o n t r o l  parameter 
e s t i m a t i o n  f r a n  data wi th  pronounced e f f e c t  of t h e  process n o i s e  (i.e.,  
Ug b 1 m / s e c )  , t h e  a lgo r i thm i n  its complete form should be used and t h e  Kalman 
f i l t e r  g a i n s  should be treated as t h e  a d d i t i o n a l  unknown parameters. 

The agreement between t h e  f i r s t  set of param- 

Example 2 

I n  t h i s  example t h e  measured data i n  t u r b u l e n t  air  were used i n  t h e  same 
model as i n  t h e  previous example. The measured input-output  time h i s t o r i e s  are 
p resen ted  i n  f i g u r e  2. For t h e  parameter e s t i m a t i o n  t h e  transformed data were 
taken from t h e  frequency i n t e r v a l  k9.817 rad/sec. The s t anda rd  error of t h e  
v e r t i c a l  g u s t  v e l o c i t y  was determined from t h e  part  of t h e  measured data wi th  
6, = Constant to  be IJ = 1.12 m / s e c .  The v a l u e s  f o r  measurement-noise s tan-  
dard errors were taken ?ran t h e  r e s u l t s  i n  r e f e r e n c e  23 as 

= 0.0017 rad Uq = 0.005 rad/sec U = 0.Olg 
u a V  a, 

The estimated s t a b i l i t y  and c o n t r o l  parameters are given i n  t h e  t h i r d  and 
f o u r t h  columns of table 11. I n  t h e  f i r s t  case ( f o u r t h  column) t h e  Kalman g a i n s  
were treated as unknown parameters; i n  t h e  second case ( t h i r d  column) they  uere 
set equal to z e r o  (assumption of no process noise). The i n c l u s i o n  o f  t h e  pro- 
cess no i se  i n  t h e  model r e s u l t e d  i n  b e t t e r  accuracy of t h e  parameter 
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i nd ica t ed  by its comparison wi th  t h e  average va lue  obta ined  from the estimates 
i n  t h e  t i m e  domain (see r e f .  23). On t h e  o t h e r  hand, t h e  process-noise consid- 
e r a t i o n  i n  t h e  e s t i m a t i o n  process degraded t h e  estimates of t h e  parameters 
and cI;ls. N o  exp lana t ion  f o r  t h i s  degrada t ion  could  be found. 

I 

Example 3 

From t h e  measured t i m e  h i s t o r i e s  i n  s t i l l  a i r  which are presented  i n  f i g -  
u re  3, t h e  t ransformed i n p u t  and o u t p u t  d a t a  and t h e  frequency response cu rves  
r e l a t i n g  a l l  t h r e e  o u t p u t s  to t h e  e l e v a t o r  d e f l e c t i o n  were obtained.  By s e t t i n g  

and t h e  matrices D, H, and G were s i m p l i f i e d  accordingly.  The unknown 
parameters were es t ima ted  from t h e  minimizat ion of t h e  cost func t ion ,  given by 
equat ion  (42) for t h e  transformed d a t a  and by equa t ion  (45) f o r  t h e  frequency 
response curves.  

c w = 0 t h e  state vec tor  i n  equa t ions  (52) and (53) was changed to x = [a,qIT 

The estimated parameters are g iven  i n  t h e  s i x t h  and seventh columns of 
table  11, and they  are compared wi th  t h e  r e s u l t s  from t h e  t i m e  domain estima- 
t i o n  given i n  t h e  f i f t h  column of  t h e  same t ab le .  The t h r e e  sets o f  estimates 
from t h e  same f l i g h t  agree w e l l .  The s t anda rd  errors of t h e  estimates i n  t h e  
frequency domain are, however, h igher  t han  those  i n  t h e  t i m e  domain. Th i s  
could be due to t r u n c a t i o n  o f  t h e  transformed data and a d d i t i o n a l  i naccurac i e s  
i n  measured frequency response curves  caused by t ak ing  t h e  ratios of  t w o  com- 
p lex  numbers. The t ransformed data and those  computed are p l o t t e d  i n  f i g u r e  4; 
t h e  measured and computed frequency response curves  are plotted i n  f i g u r e  5. 
Both f i g u r e s  i n d i c a t e  some modeling errors i n  t h e  equat ion  f o r  I t  .is also 
apparent  from f i g u r e  5 t h a t  t h e  measured frequency response curves  are inaccu- 
rate around t h e  frequency 6.4 rad/sec as a r e s u l t  of t h e  l o w  harmonic con ten t  
of  t h e  inpu t  a t  t h e  same frequency. 

aV. 

Example 4 

The response of  t h e  a i r p l a n e  to turbulence  w a s  measured i n  t w o  f l i g h t s  
(des igna ted  run 1 and run  2 i n  t a b l e  11) with t h e  minimum p i lo t  i n t e r f e r e n c e  
(6, = 0 ) .  
t r a l  d e n s i t y  o f  t h e  v e r t i c a l  g u s t  v e l o c i t y  

s i t i es  S 

t r a n s f e r  func t ion  r e s u l t i n g  from equa t ions  (52) and (53). 

From t h e  t i m e  h i s t o r i e s  of t h e  measured ou tpu t  v a r i a b l e s  t h e  spec- 
and t h e  cross-spectral den- s,$% 

and Sw a were computed. They are related by t h e  a i r p l a n e  . wgq g z  

( The state and output  equa t ions  were modified i n  t h e  fo l lowing  way: 

(a)  I n  equa t ion  (52) w and 6, were se t  equa l  to ze ro  

(b) wg w a s  assumed as a known i n p u t  

(c) The term k 8 c l w g  w a s  rep laced  by -jWkgcQg 

(d)  I n  equa t ion  (53) % w a s  set equa l  to z e r o  
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The matrices D, G, and H were t h e r e f o r e  changed as  

H =  

- 0  1 

and t h e  model was formulated as  

Sw ,D = GSw 
9 g g  

SWgY = Hswgx + G 

where 

swgx - - [Swga SwgqIT 

The vector  of unknown parameters i n  t h e s e  equa t ions  is formed as 

(56) 

(57) 

The es t imated  va lues  of t h e  f i r s t  four  parameters are given in t h e  l a s t  t w o  
columns of t a b l e  11. From t h e  estimates of 
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w a s  computed from equa t ions  (D6) and (D7) and included among t h e  unknown param- 
eters. The agreement between t h e  resul ts  from both  runs  is very  good. The 
parameters also agree wi th  t h e  estimates from t h e  still a i r  measurement wi th  
t h e  except ion  of  t h e  parameter 
expected,  probably because of  some modeling errors i n  equa t ions  (56) and (57) .  

CZa. Th i s  parameter has  a smaller va lue  than 

The measured spectral and cross-spectral d e n s i t i e s  from run  1 and those  
computed by using t h e  e s t ima ted  parameters are p l o t t e d  i n  f i g u r e  6. I t  w a s  
v e r i f i e d  t h a t  t h e  large f i t  error i n  t h e  phase of  t h e  cross-spectrum Sw 
d i d  n o t  a f f e c t  t h e  va lues  of t h e  e s t ima ted  parameters s i g n i f i c a n t l y .  Th:! esti- 
mate from turbulence  and measurement demonstrates  a p o s s i b i l i t y  f o r  us ing  t h e s e  
d a t a  also f o r  a i r p l a n e  s t a b i l i t y  and c o n t r o l  parameter e s t ima t ion .  For c e r t a i n  
model formula t ions  t h e  d e r i v a t i v e  o f  pitching-moment c o e f f i c i e n t  w i th  respect 
to  t h e  rate of  change i n  a n g l e  of a t tack  can be e s t ima ted  e x p l i c i t l y .  

CONCLUDING REMARKS 

A frequency danain maximum l i k e l i h o o d  method h a s  been developed f o r  t h e  
e s t i m a t i o n  o f  a i r p l a n e  parameters from measured f l i g h t  data. A d i sc re t e - type  
s t eady- s t a t e  Kalman f i l t e r  w a s  used i n  t h e  d e r i v a t i o n  of t h e  computing algo-  
ri thm. The t i m e  v a r i a b l e s  i n  t h e  model equa t ions  were transformed i n t o  t h e  
frequency danain by us ing  a Four i e r  series expansion. I f  t h e  i n i t i a l  d a t a  
were Gaussian and uncor re l a t ed ,  t h e  transformed data formed a complex random 
sequence which w a s  uncor re l a t ed ,  o r thogonal ,  and Gaussian.  Then, t h e  l i k e l i -  
hood func t ion  could  be formulated as a m u l t i v a r i a t e  d i s t r i b u t i o n  of  complex 
innovat ions.  

The connect ion between t h e  cont inuous form o f  a i r p l a n e  equat ions  o f  motion 
and t h e  developed a lgo r i thm is e a s i l y  e s t a b l i s h e d .  The a lgor i thm can be s i m -  
p l i f i e d  to  t h e  ou tpu t  error method wi th  t h e  measured d a t a  i n  t h e  form of  t r ans -  
formed t i m e  h i s t o r i e s ,  frequency response curves,  or spectral  and cross-spectral 
d e n s i t i e s .  I n  g e n e r a l ,  transformed input-output  t i m e  h i s t o r i e s  are p r e f e r r e d  
i n  frequency danain e s t ima t ion .  The inaccurac i e s  of frequency response curves  
computed from transformed i n p u t s  and ou tpu t s  can be q u i t e  pronounced for f r e -  
quencies  i n  which t h e  harmonic con ten t  of an inpu t  is close to  zero.  The f r e -  
quency domain approach s i m p l i f i e s  t h e  e s t ima t ion  procedure by reducing t h e  sen- 
s i t i v i t y  equa t ions  to  simple a l g e b r a i c  express ions .  I t  also provides  an easier 
way than  t h e  t i m e  domain f o r  us ing  t h e  d a t a  wi th in  a frequency range of  i n t e r -  
est. The serious disadvantage of  t h e  frequency domain i d e n t i f i c a t i o n  is i n  its 
practical  l i m i t a t i o n  to a system descr ibed  by l i n e a r  equat ions  of  motion wi th  
c o n s t a n t  c o e f f i c i e n t s .  I t  w a s  shown t h a t  t h e  cost f u n c t i o n s  i n  t i m e  domain and 
frequency domain approaches are equ iva len t .  I t  is t h e r e f o r e  necessary to con- 
sider both approaches as complementary and n o t  con t r ad ic to ry .  

The maximum l i k e l i h o o d  method has been a p p l i e d  to computer-generated and 
real f l i g h t  d a t a  f o r  t h e  l o n g i t u d i n a l  motion of  a small g e n e r a l  a v i a t i o n  air-  
p lane .  I n  t h e  f i r s t  case t h e  estimates ob ta ined  were more a c c u r a t e  than  those  
from the s i m p l i f i e d  o u t p u t  error method, which d i d  n o t  cons ider  t h e  e f f e c t  of 
t h e  process noise. I n  t h e  second case t h e  r e s u l t s  were inconclus ive  because of 
an i n s u f f i c i e n t  amount of measured da ta .  Then, t h e  s i m p l i f i e d  algorithm was 
used w i t h  t h e  f l i g h t  d a t a  from measurements i n  s t i l l  a i r  and t u r b u l e n t  a i r  wi th  

23 



$ 

t no pilot input. The first set of results for deterministic input showed the 
expected similarity in parameter values obtained from the time and frequency 
domains. The estimates from turbulence measurements demonstrated a possibility 

estimation of the pitching-moment derivative with respect to the rate of change 
in angle of attack. 

for using these data also for airplane parameter estimation and for explicit 4 
I 

i 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
April 1, 1980 
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APPENDIX A 

FOURIER TRANSFORM OF A STOCHASTIC PROCESS 

L e t  z ( t ) ,  where t = 0 ,  1 ,  . . ., and N - 1 ,  be  a real random sequence 
wi th  

Theorem 1: I f  z ( t )  is p e r i o d i c  i n  t h e  mean-square sense ,  then it can be 
expanded i n t o  a Four i e r  series: 

N 
--1 

where wo = 2"; and t h e  c o e f f i c i e n t s  % ( n ) ,  given as 

t = O  

are uncorre la ted  and or thogonal  r a n d m  v a r i a b l e s  such t h a t  

where S,,(n) is t h e  spectral d e n s i t y  of  z ( t )  . 
Proof:  Fram equa t ions  ( A l )  and (A3) t h e  expected va lue  of Z(n) is found as 
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To prove t h e  second part of equa t ion  (A4) t h e  conjugate  of Z(n) is f i r s t  
m u l t i p l i e d  by z ( t )  and then t h e  expected va lue  is taken; i.e., 

jnwo s 
E{z*(n) z ( t ) )  

N 

jnwos 1 N-1 
= - E{z(t)  z(s)) e 

N s=o 

The new v a r i a b l e  T = t - s and t h e  r e l a t i o n s h i p s  

N - -1 

are introduced (see, e.g., r e f .  6 )  . Then 

Using equa t ions  (A3) and (A7) t h e  expected va lue  of $ (m)  z*(n) can be 
formulated as 

4 i 
1 

+ 
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For 

For 

m = n t h e r e  is 

m # n t h e  d i f f e r e n c e  m - n = a, where a is an in t ege r :  t h e r e f o r e ,  

and t h e  proof of equat ion  (A4) is t h u s  completed. 

T o  prove equat ion  ( A 2 ) ,  it is s u f f i c i e n t  to show t h a t  t h e  sequence z ( t )  - t ends  to En z ( n )  exp(jnw0t)  i n  t h e  mean-square sense: i.e., 

N 
--1 

n=- - 
2 

jnwo t 

J 
e ) = O  

The square  i n  equat ion  (A9) can be w r i t t e n  as a product  of i t s e l f  by i ts  
conjugate .  Equation (A9) is t h e r e f o r e  changed to 

j (m-n) wo t = o  
+ EnCm E{z(m) z"*(n)} e 

I n  t h e  double summation a l l  t h e  terms with m # n are e q u a l  to zero.  Using 
equa t ions  ( A l )  , (A2), and ( A 7 ) ,  t h e  prev ious  equat ion  can be expressed  as 

Each sum above equa l s  RZz(0) (see eq. ( A 5 ) ) ;  hence t h e  whole expres s ion  
equals  ze ro  and equat ion  (A9) is proved. 

27 
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Theorem 2: L e t  z ( t ) ,  t = 0 ,  . . ., and N - 1 ,  be mutual ly  s t o c h a s t i c a l l y  
independent random v a r i a b l e s  having, r e s p e c t i v e l y ,  Gaussian d i s t r i b u t i o n s  wi th  
E { z ( t ) )  = 0 and E { z 2 ( t ) )  = U2. Then t h e  sequence 

I' 
where 

N N 
n = -  -,. . . , O , l , .  . .,- - 1 

2 2 

c o n s i s t i n g  of real  parts 'IzR(n) and imaginary parts ril(n) is a complex 
Gaussian and uncor re l a t ed  sequence wi th  

Proof: I t  has a l r e a d y  been proved t h a t  

T h i s  r e s u l t  combined w i t h  t h e  d e f i n i t i o n  of t h e  expec ted .va lue  of a complex 
r a n d m  v a r i a b l e  (eq. ( B l ) )  implies t h a t  

I t  has also been shown t h a t  ( i n  eq. ( A 8 ) )  

$' 
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Using t h e  same approach as t h a t  f o r  t h e  development of equa t ion  ( A 8 ) ,  it can  
be shown t h a t  

+ jE{zR(m) Z1(n)) + jE{'il(m) ZR(n)} (A1 4 )  

From equa t ions  (A8) and ( A l 2 )  to ( A 1 4 ) ,  t w o  sets of equa t ions  can be formed as 

J E{zR(m) Z R ( n ) )  - E{z"I(m) Z1(n)) = 0 

and 

These t w o  sets g i v e  t h e  s o l u t i o n  

s,, ( m )  
E(zR(m) ZR(n) )  = E{zl(m) z l ( n ) )  = 6m,n 

2N 

which proves t h e  v a l i d i t y  of equa t ion  ( A l l ) .  Equations (A15) and (A16) 
have been developed f o r  m and n being p o s i t i v e .  I n  t h e  case where 
(-N/2) S m,n 6 (N/2 - 1 )  t h e  proof based on t h e s e  e q u a t i o n s  is st i l l  v a l i d .  
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The only change might occur in equations (AlS), where the right-hand sides 
would be interchanged. The form of the solution given by equations (A17) 
and (Al8) does not change. 

Finally, it is necessary to prove that E(n) is Gaussian. For this 
proof the concept of the moment-generating function is used. 
is expressed as 

When Z(n) 

where 

1 -jnwot c t = - e  
N 

then the moment-generating function of the variable ct z(t) is given accord- 
ing to reference 24 as 

where b is a constant independent of ct z(t). Thus, the moment-generating 
function of Z(n) is 

- which means that z(n) is Gaussian with zero mean and variance 02/N or, 
using equation (A4), with variance S,,/N. The sequence z"(n) is formed 
by a collection of uncorrelated Gaussian random variables. 
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COMPLEX RANDOM VARIABLE 

A complex random v a r i a b l e  z is a complex number z ( 5 )  determined by 
an outcome 5 ;  i .e.,  

such t h a t  t h e  f u n c t i o n s  zR and z1 a r e  random v a r i a b l e s .  By d e f i n i t i o n ,  t h e  
expected value of a complex random v a r i a b l e  is 

t h e  va r i ance  is 

and t h e  covar iance  is 

I f  

then  t h e  complex random v a r i a b l e s  21 ,  22, . . . , and zn a r e  uncorrelated. 
They are or thogonal  i f  

I f  t he  complex randan v a r i a b l e  z = zR + jzl has  its real and imaginary 
parts normally d i s t r ibu ted  wi th  
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and t h e s e  parts are s t o c h a s t i c a l l y  independent,  then t h e  d i s t r i b u t i o n  of a 
complex random variable z w i l l  be de f ined  as a j o i n t  d i s t r i b u t i o n  of t h e  
independent v a r i a b l e s  zR and z1 such t h a t  

- -  1 exp ( -z*z/0:)  
- 2  

TI02 

I f  z is a complex vec to r  of dimension r ,  then  t h e  Gaussian d i s t r i b u t i o n  
is de f ined  as 

where 2 is t h e  cova r i ance  ma t r ix  of z. This  is a Hermitian nonnegative 
square ma t r ix  of dimension r.  If z has components t h a t  are s t o c h a s t i c a l l y  
independent, then c is a d i agona l  matrix.  Equation (B5) a g r e e s  with t h e  
d e f i n i t i o n  of t h e  Gaussian d i s t r i b u t i o n  p resen ted  i n  r e fe rences  24 and 25. 
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INFORMATION MATRIX AND GRADIENT OF LOG-LIKELIHOOD FUNCTION 

From equa t ions  (32) and (34) t h e  elements  of t h e  informat ion  ma t r ix  are 
g iven  as 

MkR = 2N R e  E { cn  - aij* E} 
a o k  %Q 

where t h e  expected va lue  can  be w r i t t e n  as 

The measured ou tpu t s  and innovat ions  are given by equa t ions  (19) and (22) as  

-1 -1 where T3 = T2 , T4 = T2 T I ,  and T1 and T2 are de f ined  by equa t ions  (20) 
and (21 ) . Therefore ,  

33 



where 

... 
Because u (t) and V (t) are uncor re l a t eh ,  t h e  transformed variables u (n)  
and u ( n )  are also uncorre la ted .  Using equa t ions  (C3) and (B4) t h e  expected 
va lues  i n  (C5) can be expressed  as 

1 

N 
E{Cfi*} = - Suu 

After s u b s t i t u t i n g  equat ion  (C6) i n t o  equat ion  (C5) and some tedious 
manipulat ion,  

From equat ions  (C2) and (C7),  
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Substituting equation (C8) into equation (Cl) , the final form for the elements 
of the information matrix is obtained as 

M a  = 2 Re Cn -1 

From equation (33 )  the element of the gradient of the log-likelihood 
function is 

a J (0) -* -1 ao ao* -1- 
svvv 

- -  - -2N Re In v Svv - - - -2N Re In - 
a o k  aok aok 

Using equation (C4) 

Then 

where 

aa - -  - T-’T 3 - T;’T~ kfi 
a0k 2k 

and 

* 
(Ti’ T1 kO) S;:J = Tr yu T1 (TZ) -’ S;:Ti’] - Tr[ uu*T1 (T$) -’ SvvT2 -1 -1 TI] [--* * 
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Int roducing  

1 ,  

N 
...- * vv = - syy 

1 A  

N 
_- * uu = - s,, 

-1 
and approximating SvvsVv = I ,  equat ion  (C12) is changed as  

F i n a l l y ,  s u b s t i t u t i n g  equat ion  (C15) i n t o  equat ion  ( C l O ) ,  t h e  e lements  i n  t h e  
g r a d i e n t  vec tor  are ob ta ined  as 
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EQUATIONS OF LONGITUDINAL MOTION OF AN AIRPLANE IN PRESENCE OF TURBUL~NCE 

The airplane equations of motion are referred to the body axes. They are 
perturbed equations for datum conditions corresponding to steady horizontal 
flight. The equations are based on the following assumptions: 

(1 )  The airplane is a rigid body 

(2) The elevator deflection and turbulence excite the longitudinal motion 
during which the airspeed remains constant 

( 3 )  The turbulence is approximated by a one-dimensional gust field, and 
the angle-of-attack and pitch-rate perturbations due to turbulence 
are given as 

and 

qg = -“g 

( 4 )  The aerodynamic model equations for the increments in Cz and Cm 
have the form 

where the input and output variables are the increments with respect to the 
initial steady flight. 
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Using these  assumptions,  t h e  l o n g i t u d i n a l  equa t ions  of  motion can be 
expressed  as 

where g s i n  808 i n  equat ion  ( D l )  is n e g l i g i b l e .  

I n  equa t ions  ( D l )  and (D2) ag is a s t o c h a s t i c  va r i ab le .  Its spectral 
d e n s i t y  can be modeled, f o r  example, by a Dryden formula (see r e f .  26) .  I n  t h e  
f u r t h e r  development it w i l l  be assumed t h a t  t h e  turbulence  v e l o c i t y  component 

wg 
equat ion  

is a Gauss-Markoff process of f i r s t  o rde r  governed by t h e  d i f f e r e n t i a l  

Gg = -C1Wg + c2w 

where 

6, is t h e  scale of tu rbulence ,  and w is t h e  uncor re l a t ed  no i se  process wi th  
Eqw} = 0 and E{w2} = 0;. 

When equat ion  ( D l )  is s u b s t i t u t e d  i n t o  equa t ion  ( D 2 )  and equat ion  (D3) is 
cons idered ,  then t h e  s ta te  equa t ions  f o r  t h e  l o n g i t u d i n a l  motion of t h e  a i r -  
p lane  w i l l  have t h e  form 
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w h e r e  

P S  
k 3  = - 

2m 

pSV$ 
k 5  = - 

2 I Y  

p svoc 
k 7  = - 

2 I Y  

( N o t e :  k4c2Czq = 0 ) .  

p SC 
k 2  = - 

4m 

p SC 
k 4  = - 

4mVo 

p svoC2 
k 6  = 

41Y 

p SC2 
k 0  = - 

41Y 
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c& = % - C6(l + $ cZq) 

For the parameter estimation from measured data, state equations (D4) are 
completed by the output equations 
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TABLE I.- ESTIMATED AIRPLANE PARAMETERS FROM COMPUTER-GENERATED DATA 

-. ... - .- . .- 

I n i t i a l  value 

. . .. - . . 

-5.0 

- 20 
-1 .o 

-. 80 
- 24 
-3.3 

-.0563 

2.544 

.0025 

2.438 

9.7 

-.018 

213.0 

-5.065 

-12.63 

------I 

- . - - . . . 

Estimate of parameter 
(a) 

With process noise  
- ~~ 

K estimated 

-5.07 
._ 

(.091) 
-23.8 
(2 03) 
-1.17 

( .071) -. 82 
(.015) 

-24.0 
(-52) 

-3.21 
(.062) -. 44 
(.011) 
2.31 
(.010) -. 21 
(.010) 
1.84 
( .044) 

10.8 
( ~ 4 )  
.09 
(-97) 

156 
(8-9) 
-8 
(2.1 1 

-15 
(6 .2)  

67 

.30 

50 

K f i x e d  
- 

-5.72 
(.20) 

-17 
(2.7) 
-1 .l 
(-17) -. 94 
(.031) 

-25.5 
( 38) 

-3.16 
( .080) 
-.0563 

2.544 

. 00 25 
2.438 

9.7 

-.018 

213.0 

-5.065 

-1 2.63 

.72 

.60 

1 .l 

Assumed 
no process  noise  

-5.2 
(010) 

-1 5 
(4 -0 )  -. 57 
(-31) -. 83 
(.014) 

-22.1 
( 65) 

-3.18 
(. 050) 
0 

0 

0 

0 

0 

0 

0 

0 

0 

.70 

.82 

1.6 

aNumbers i n  parentheses are Cramgr-Rao lower bounds on standard errors.  
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! . TABLE 11.- ESTIMATED AIRPLANE PARAMETERS FROM MEASUREMENTS I N  TURBULENT AND STILL A I R  

Parameter L 
Estimate of parameter 

(a) 
Aver age value 

and its 
standard 

error 
(b) 

Example 3 (st i l l  a i r )  Example 2 
(turbulent a i r )  

Example 4 
(turbulent a i r )  

Frequency dmair 
(e 1 

___i 
With 

process 
noise 

q 
domain 

Assumed no 
pr oces s 

noise 

Frequency 
domain 

(C) 

F r equency 
domain 

(dl 
Run  1 Run 2 ~ 

-5.3 f 0.1 

-19 f 3 

-1.2 2 0.2 

-.80 f 0.02 

f 0.4 

-5.67 
(. 057) 

-10.3 
( 92) 
-.6 
(-16) 
-.783 
(. 0074) 

(-40) 
-26.6 

--------- 

-3.21 
(. 030) 

-5.70 

-8 
(3.5) 
-.6 . 

( 0  28) 
-.81 
(.011) 

(-50) 

(. 086) 

-28.6 

-------- 

-3.54 
(. 040) 

-5.6 

-4 
(4.7) 
-.6 
( *  33) 
-.82 
(. 027) 

(092) 

(.I91 

-26.3 

-------- 
-3.38 

(. 060) 

-24.2 

-8.0 

-3.3 It: 0.05 -3.3 
(-12) 

aNumbers i n  parentheses are Cram&-Rao lower bounds on standard errors. 
b ran  the maximum likelihood estimates i n  the time domain (ref. 23). 
9ransformed input and output time histories. 
dFrequency response curves. 
eSpectral and cross-spectral densities. 

and Co fCanputed fran estimated c% %I' 



1. 0 E 

Figure 1.- Time histories of computer-generated output and input variables. 
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Time, t, sec 

-. 05 

Figure 2.- Time h i s t o r i e s  of measured output and input var iables .  
F l i g h t  i n  turbulence. 
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a,, g uni t s  

- 
Time, t, sec 

Figure 3.-  Time h i s t o r i e s  of measured output and input var iables .  
F l i g h t  i n  still a i r .  
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Figure 4.- Measured transformed time histories and those computed by 
using estimated parameters . 
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Figure 4 .  - Continued. 
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Figure 4.- Continued. 
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t Measured input 
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